Sine-Squared pulse approximation using generalized bessel polynomials

dc.contributor.authorThanavit Anuwongpinit
dc.contributor.authorVanvisa Chutchavong
dc.contributor.authorKanok Janchitrapongvej
dc.contributor.authorChawalit Benjangkaprasert
dc.date.accessioned2025-07-21T06:01:26Z
dc.date.issued2019-04-01
dc.description.abstractThis paper presents the approximation of sine-squared pulse based on the generalized Bessel polynomials. For designing a circuit to synthesize a sine-squared pulse test signal. The generalized Bessel polynomials have more parameter than classical Bessel polynomials that have alpha and beta parameters for adjusting the dominator of the transfer function to approximate the sine-squared pulse that closes to the ideal pulse. The simulation results show that the generalized Bessel polynomial can adjust the approximation response close to the ideal response. The orders of the transfer function are decreased that confirm a better performance than the previous works.
dc.identifier.doi10.1088/1742-6596/1195/1/012018
dc.identifier.urihttps://dspace.kmitl.ac.th/handle/123456789/8287
dc.subjectBessel polynomials
dc.subjectSine
dc.subjectBessel process
dc.subject.classificationSensor Technology and Measurement Systems
dc.titleSine-Squared pulse approximation using generalized bessel polynomials
dc.typeArticle

Files

Collections