Reusability, Long_Life Storage and Highly Sensitive Zirconium Nitride (ZrN) Surface_Enhanced Raman Spectroscopy (SERS) Substrate Fabricated by Reactive Gas_Timing Rf Magnetron Sputtering

dc.contributor.authorNguentra Sucheewa
dc.contributor.authorWinadda Wongwiriyapan
dc.contributor.authorPrapakorn Rattanawarinchai
dc.contributor.authorTuksadon Wuttikhun
dc.contributor.authorKittiphat Sinthiptharakoon
dc.contributor.authorSaran Youngjan
dc.contributor.authorPongtanawat Khemthong
dc.contributor.authorGamolwan Tumcharern
dc.contributor.authorTossaporn Lertvanithphol
dc.contributor.authorNutthamon Limsuwan
dc.contributor.authorApirak Pankiew
dc.contributor.authorMati Horprathum
dc.contributor.authorSupanit Porntheeraphat
dc.contributor.authorVisittapong Yordsri
dc.contributor.authorNarathon Khemasiri
dc.contributor.authorMichiko Obata
dc.contributor.authorMasatsugu Fujishige
dc.contributor.authorKenji Takeuchi
dc.contributor.authorMorinobu Endo
dc.contributor.authorAnnop Klamchuen
dc.contributor.authorJiti Nukeaw
dc.date.accessioned2025-07-21T06:09:56Z
dc.date.issued2023-09-21
dc.description.abstractAbstract Transition metal nitrides (TMN) are promising material alternative to replace noble metals in the field of plasmonic applications, especially surface‐enhanced Raman spectroscopy (SERS). Here we demonstrate a practical surface enhanced Raman spectroscopy (SERS) substrate using zirconium nitride (ZrN) thin films grown by reactive gas‐timing (RGT) rf magnetron sputtering. The tailored properties of ZrN thin film exploited for SERS activity could be achieved to obtain a highly sensitive ZrN thin film SERS substrate with the enhancement factor (EF) of 1.24 × 106 and 4.8 %RSD at 1626 cm‐1 toward methylene blue (MB) analyte which are comparable to the optimized Au sputtered thin films (EF=1.18 × 106 and with 5.1%RSD). We find that the spatial plasmonic hotspots on the surface of ZrN SERS substrate controlled by the turn‐on timing of Ar:N2 sputtered gas sequence, leading to the discrete conductive surface profile, strongly relates to non‐stoichiometric composition and the degree of (200)‐oriented texture at the surface of ZrN thin film. Furthermore, ZrN thin film SERS substrates exhibit an excellent recyclability more than 30 cycles with simple cleaning process and a storage time longer than 6 months. The detection and reusability of ZrN SERS substrate on the low concentration of trinitrotoluene (TNT) for homeland security are also performed.
dc.identifier.doi10.1002/admi.202300472
dc.identifier.urihttps://dspace.kmitl.ac.th/handle/123456789/12823
dc.subjectZirconium nitride
dc.subjectSurface-Enhanced Raman Spectroscopy
dc.subject.classificationGold and Silver Nanoparticles Synthesis and Applications
dc.titleReusability, Long_Life Storage and Highly Sensitive Zirconium Nitride (ZrN) Surface_Enhanced Raman Spectroscopy (SERS) Substrate Fabricated by Reactive Gas_Timing Rf Magnetron Sputtering
dc.typeArticle

Files

Collections