Optimizing echo state networks for continuous gesture recognition in mobile devices: A comparative study
Loading...
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Continuous gesture recognition can be used to enhance human-computer interaction. This can be accomplished by capturing human movement with the use of the Inertial Measurement Units in smartphones and using machine learning algorithms to predict the intended gestures. Echo State Networks (ESNs) consist of a fixed internal reservoir that is able to generate rich and diverse nonlinear dynamics in response to input signals that capture temporal dependencies within the signal. This makes ESNs well-suited for time series prediction tasks, such as continuous gesture recognition. However, their application has not been rigorously explored, with regard to gesture recognition. In this study, we sought to enhance the efficacy of ESN models in continuous gesture recognition by exploring diverse model structures, fine-tuning hyperparameters, and experimenting with various training approaches. We used three different training schemes that used the Leave-one-out Cross-validation (LOOCV) protocol to investigate the performance in real-world scenarios with different levels of data availability: Leaving out data from one user to use for testing (