A new technique for convergence theorem of fixed point problem of quasi-nonexpansive mapping
Loading...
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Abstract For the purpose of this paper, we use the method different from the relaxed extragradient method for finding a common element of the set of fixed points of a quasi-nonexpansive mapping, the set of solutions of equilibrium problems, and the set of solutions of a modified system of variational inequalities without demiclosed condition of W and $W_{\omega}:= (1-\omega )I+\omega W$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>ω</mml:mi> </mml:msub> <mml:mo>:</mml:mo> <mml:mo>=</mml:mo> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>−</mml:mo> <mml:mi>ω</mml:mi> <mml:mo>)</mml:mo> <mml:mi>I</mml:mi> <mml:mo>+</mml:mo> <mml:mi>ω</mml:mi> <mml:mi>W</mml:mi> </mml:math> , where W is a quasi-nonexpansive mapping and $\omega\in (0,\frac{1}{2} )$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>ω</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:mo>)</mml:mo> </mml:math> in the framework of Hilbert space. By using our main result, we obtain a strong convergence theorem involving a finite family of nonspreading mappings and another corollary. Moreover, we give a numerical example to encourage our main theorem.