Integrated Vehicle-Following Control for Four-Wheel Independent Drive Based on Regenerative Braking System Control Mechanism for Battery Electric Vehicle Conversion Driven by PMSM 30 kW

Loading...
Thumbnail Image

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

This study proposed the hybrid energy storage paradigm (HESP) equipped with front-wheel permanent magnet synchronous motors (PMSMs) for battery electric vehicles (BEVs). In this case, all four wheels are driven by a single motor using mechanical coupling to distribute the motor’s power to each wheel evenly. The HESP is a combination of several supercapacitors (SCs) and an NMC-lithium battery equipped with an advanced artificial neural network (ANN) that will enhance the regenerative braking system (RBS) efficiency of energy storage during braking. The three-phase inverter switching algorithm ensures efficient regenerative braking and fine adjustment of the brake force distribution. Under the RBS, the HESP with the ANN first transfers braking energy to the SC and, when the safety standard is reached, the SC transfers it to the battery. The RBS control maintains an even distribution of braking force at all distances to ensure stability during braking. The results show that a traditional BEV can drive 245.46 km (35 cycles), while an EV with an RBS-only battery can drive 282.56 km (40 cycles). An EV with HESP-RBS can drive 338.78 km (48 cycles), which is an increase of 93.32 km (13 cycles). The HESP-RBS increased the regenerative efficiency by 38.01% when compared to a traditional BEV.

Description

Citation

Collections

Endorsement

Review

Supplemented By

Referenced By