Graphene nanosheet-grafted double-walled carbon nanotube hybrid nanostructures by two-step chemical vapor deposition and their application for ethanol detection

Loading...
Thumbnail Image

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Abstract Here, we present a facile technique for synthesis of graphene nanosheet (GNS)-grafted double-walled carbon nanotube (DWCNT) hybrid carbon nanostructures (here after referred to as G-DWCNTs) by directly growing GNSs along the sidewalls of DWCNTs using a two-step chemical vapor deposition (CVD). DWCNTs were synthesized by floating catalyst CVD at 1300 °C using ferrocene and thiophene dissolved in ethanol. Then, GNSs were grafted onto the synthesized DWCNT bundles by thermal CVD at 1300 °C using ethanol. The sharp-edged petal-like structure of GNSs were grown along the sidewalls of DWCNT bundles while maintaining the one-dimensional structure of DWCNT. Next, DWCNTs and G-DWCNTs were dispersed in ethanol, then deposited on the paper using vacuum filtration method and used for ethanol detection. G-DWCNTs sensor exhibited a 3-fold improvement in the response to ethanol vapor compared to the DWCNTs sensor. The sensing mechanism of DWCNTs and G-DWCNTs can be described in terms of charge transfer between the gas molecules and sensing material. These results demonstrate that the facile technique by two-step CVD method provides a promising approach for simple and low-cost technique to synthesize the hybrid nanostructure of GNSs and DWCNTs. The new hybrid carbon nanostructures are attractive for gas sensing application.

Description

Keywords

Citation

Collections

Endorsement

Review

Supplemented By

Referenced By