A Big Data Analysis on Urban Mobility: Case of Bangkok

Loading...
Thumbnail Image

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Designing an efficient on-demand mobility service requires comprehensive knowledge of the statistical characteristics of trips. In other words, it is critical to know how long passengers typically spend on a trip and how far they usually travel. Likewise, it is important to learn how much time a driver spends searching for passengers. This study presents a statistical analysis of taxi trips in Bangkok based on real traces of 5,853 taxis over the period of three months. Significant insights on trip volume, trip time, trip distance, and origin-destination distance are derived. In addition, the probability distributions of trip time, trip distance, and origin-destination distance are also characterized based on two goodness-of-fit tests. To our knowledge, this characterization is done for the first time for Bangkok taxi trips. It is shown that a lognormal distribution can best describe the empirical trip time distribution. On the other hand, a Weibull distribution can best describe the empirical trip distance distribution and the empirical origin-destination distance distribution. These distributions are essential to traffic simulation. Finally, the efficiency of the Bangkok taxi system is also quantified both at the system level and at the agent level.

Description

Keywords

Citation

Collections

Endorsement

Review

Supplemented By

Referenced By