Simplified Derivative-Based Carrierless PPM Using VCO and Monostable Multivibrator
Loading...
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This study proposes a derivative-based, carrierless pulse position modulation (PPM) scheme utilizing a voltage-controlled oscillator (VCO) and a monostable multivibrator. In contrast to conventional PPM systems that rely on reference carriers or complex demodulation methods, the proposed architecture simplifies signal generation by directly modulating the time derivative of the message signal. The modulated signal, when processed through standard analog demodulators, inherently yields the derivative of the original message. This behavior is first established through theoretical derivations and then confirmed by simulations and circuit-level experiments. The proposed method includes a differentiator feeding into a VCO, followed by a monostable multivibrator to generate a carrierless PPM waveform. Experimental validation confirms that, under all tested demodulation approaches—integrator-based, PLL-based, and quasi-FM—the recovered output aligns with the differentiated message signal. The integration of this output to retrieve the original message was not performed to maintain focus on verifying the modulation principle. Additionally, the study aimed to ensure the consistency of derivative recovery. Signal-to-noise ratio (SNR) expressions for each demodulator type are presented and discussed in the context of their relevance to the proposed system. Limitations and directions for further study are also identified.