Automated Port-scan Classification with Decision Tree and Distributed Sensors
Loading...
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Computer worms randomly perform port scans to find vulnerable hosts to intrude over the Internet. Malicious software varies its port-scan strategy, e.g., some hosts intensively perform scans on a particular target and some hosts scan uniformly over IP address blocks. In this paper, we propose a new automated worm classification scheme from distributed observations. Our proposed scheme can detect some statistics of behavior with a simple decision tree consisting of some nodes to classify source addresses with optimal threshold values. The choice of thresholds is automated to minimize the entropy gain of the classification. Once a tree has been constructed, the classification can be done very quickly and accurately. In this paper, we analyze a set of source addresses observed by the distributed 30 sensors in ISDAS for a year in order to clarify a primary statistics of worms. Based on the statistical characteristics, we present the proposed classification and show the performance of the proposed scheme.